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Abstract. The result of the inverse of a linear operator on a vector is given by a recursion 
method which involves only three vectors at a time. The method is independent of any inner 
product. 

1. Introduction 

To a large extent quantum mechanics depends on the inversion of linear operators. 
Although in quantum mechanics the inner product is defined, it is not always best to 
choose an orthogonal basis or even a complete basis. The intention of this paper is to 
introduce a recursive method of obtaining the result of the inverse of a linear operator 
on a vector independently of any inner product. 

The history of recursive inversion schemes is long. Briefly and with reference to this 
method, the first such scheme was the solution to the problem of moments (Shohat and 
Tamarkin 1970). The next, a generalization of that scheme, was the method of Lanczos 
(Wilkinson 1965). Recently the conjugate gradient method of inversion has appeared 
(Reid 1971). All these methods depend either on the construction or use of an inner 
product. In this generalization of the preceding methods we dispense with the inner 
product. 

The plan of this paper is to describe the procedure as it applies to the resolvent 
operator and then to show how the moment expansion of the resolvent and the recursion 
method (Haydock et a1 1972) are special cases. The appendix contains an outline of the 
proof of the method. 

2. Expansion of the resolvent 

Consider the resolvent operator, an object of considerable use in quantum mechanics. 
Given a linear operator H on a vector space V over the complex numbers, and that for 
all x in V, H x  is also in V,  the resolvent operator is, 

R(E) = [EZ - HI - (1) 

where Z is the identity operator and E is a complex number, R(E) is defined on Vfor 
vectors which are not eigenvectors of H with eigenvalue E .  
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Given an initial vector x o ,  define a sequence of vectors {x,,}, from arbitrary sequences 
of complex numbers {a,}, [b,} and {c,}, as follows : 

This procedure terminates at n if x , + ~  is the null vector (b, = 0). 
We may represent H on polynomials by mapping H to the polynomial variable E 

and each of the vectors x,+, to a polynomial P:)(E). The different sequences of poly- 
nomials indicated by the superscript n come from mapping some of the x ,  to zero. In 
general, the mapping of (x,} to polynomials is : 

a polynomial of degree m. The yse of the different representations simplifies a number 
of the expressions in what follows. Since the E, {PK'(E)}  represent H, {x,,}, the poly- 
nomials obey the same relations : 

b,Py'(E) = ( E  - a,)Pt'(E), 
(4) 

The b, are normalizations and sometimes the polynomials are defined without them, 
however to keep the analogy between the vectors and polynomials we retain them. 
Thus, 

bn + mpC\ ,(E) = ( E  - an + m)p(2(E) - cn + mp;: ,(E) m > 0. 

P',"'E) = 1 

1 
PT'(E) = - (E-  an) 

bn 

1 1 1  
P:"'(E) = - - ( E - a n + l ) ( E - a n ) - c n + l  

b,+,ib. 

and so on. 
The polynomials P;'(E) are orthogonal according to 

m 

P',"'(E)P{"'(E) w,,(E) dE = 6,, , 

( 5 )  

where w,(E) is a non-negative weight function. The weight function is connected to the 
polynomials in another way. Shohat and Tamarkin (1970) show that 

P:+"(E) 7,  w,,(t)dE f , (E)  = lim 
m+m b,P:\ ,(E) = .I- 3o E-t' (7) 

and discuss the precise meaning of the limit. The polynomials with different superscripts 
are also connected by a recursion relation which follows from the definition of the 
polynomials, 

(8) b, - b,P'," ; :)(E) = ( E  - a, - Jb,P:)(E) - c,b, - P i ?  :)(E). 
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Substituting for P:Ll(E) in (7) and simplifying gives, 

f,(E) = [ E  - a, - b,c, + I f ,  + ,(E)I- l .  

A simple example of such a system is the Chebyshev polynomials, 

(9) 

They satisfy the relation in (4) with a, = 0, bo = f i / 2 , c1  = bo, and for n > 0, 
b, = c,+ = i. Because the {b,} repeat after n = O,f,(E) = f ,+,(E) for n > 0. This 
leads from (9) to an equation for f,, n > 0, 

= [ E -  af,(E)1- l .  (1 1)  
There are two roots, however only one has the property that f ,(E) -+ 0 as E + CO, which 
it must do if the weight function wo is normalizable, so 

f,(E) 2[E-(E2 - 1)"2] n > 0. (12) 

Using (9) and bo = $12 we get, 

f o (E)  = (E2 - 1)- 1'2. 

Equation (7) relates w,(E) to f,(E) and 

-(l-E 2 ) - 1 / 2  

I o  
and for n > 0 

I o  

gives 

IEI < 1 

otherwise 

lEl < 1 

otherwise. 

These are indeed the correct weight functions for Chebyshev polynomials. 
The inverse is now, 

m n - 1  

~ ( ~ 1 x 0  = 1 ( n (fm(E)bm)) f,(E)xn. 
n = O  m = O  

The convergence of this series depends first on the convergence offm(E) and then on the 
magnitude off,(E)b,. If for n > N ,  

l f , ~ ~ ~ ~ , l ~ l l ~ , l l / l i ~ , -  111) < 1 

then the series converges. Equation (15) expresses the effect of R(E)  on xo as a linear 
combination of the x,. The product in each term of (15) may be expressed in several 
different ways using (7) and (9). 

3. Examples 

Consider first the simplest choice of vectors. Let a, = 0, b, = 1, c, = 0 which means, 

x, = H"xo. (16) 
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The f,(E) are simply, 
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(17) 

so 

which is just the power series expansion of 

[EI  - H ] - ' x ~ .  

A more complicated example is to suppose that there is some inner product defined 
on I/. Now choose the { x , }  to be mutually orthonormal with respect to this inner 
product. Then given x , -  1 ,  x ,  and c,, 

c,+1 = X , . H X , + l .  

Starting with xo  arbitrary, co = 0, equations (16) determine sequences { a , } ,  {b,}, IC,} 
and { x,}  recursively. This choice leads to simplified calculation of spectral densities 
(Haydock and Kelly 1973). Note also that 

b, = x,+ 1 . H x , ,  

so that if H is symmetric, 

X ,  + 1 . H x ,  = X ,  . H x ,  + 1 9  

b, = C n + l  

and 
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Appendix. Outline of proof 

Equation (15) gives the action of the resolvent on x o .  Consider 
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The definition of f , ( E )  in equation (9) gives, 

[EI-H]R(E)xo = xo, 64.4) 
which is what was to be shown. 

There is, of course, a great deal which should be said about the convergences of 
equation (15) for different choices of (a,}, (b , }  and IC,}. However that and the question 
of numerical stability are unexplored except for the special cases referenced. 
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